Cargando

Utilizamos cookies propias y de terceros para ofrecer nuestros servicios, recoger información estadística e incluir publicidad. Si continúas navegando, aceptas la instalación y el uso. Si no la aceptas, puede que no te funcione correctamente la página. Puedes cambiar la configuración u obtener más información a través de nuestra Política de Cookies.

Descargar apuntes 

Profesor: Javi Montero

Autor: mara222

Idioma: Castellano

Peso: 4.9MB

Atención: tu descarga comenzará en 15 seg.


Comentarios

Esto NO es el estado real de los apuntes, es una transcripción en bruto.
Vista previa:
C ÁLCULO DIFERENCIAL E INTEGRAL DE FUNCIONES DE UNA VARIABLE Francisco Javier Pérez González Departamento de Análisis Matemático Universidad de Granada I Licencia. Este texto se distribuye bajo una licencia Creative Commons en virtud de la cual se permite: Copiar, distribuir y comunicar públicamente la obra. Hacer obras derivadas. Bajo las condiciones siguientes: Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor o el licenciador (pero no de una manera que sugiera que tiene su apoyo o apoyan el uso que hace de su obra). $ No comercial. No puede utilizar esta obra para fines comerciales. \ BY: Compartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta. C Universidad de Granada Dpto. de Análisis Matemático Prof. Javier Pérez Cálculo diferencial e integral ´ Indice general Prólogo XVI Guías de lectura XX 1. Axiomas de R. Principio de inducción 1 1.1. Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1. Axiomas, definiciones, teoremas, lemas, corolarios. . . . . . . . . . . . 1 Axiomas de los números reales . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1. Axiomas algebraicos . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2. Axiomas de orden . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2. 1.2.2.1. Relación de orden . . . . . . . . . . . . . . . . . . . . . . . 1.2.3. Desigualdades y valor absoluto 5 . . . . . . . . . . . . . . . . . . . . . 6 1.2.3.1. La forma correcta de leer las matemáticas . . . . . . . . . . 7 1.2.3.2. Una función aparentemente caprichosa . . . . . . . . . . . . 8 1.2.4. Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.5. Ejercicios resueltos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3. Principio de inducción matemática . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.1. Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.2. Ejercicios resueltos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4. Complementos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4.1. Números y medida de magnitudes. Segmentos inconmensurables. . . . 26 II Índice general III 1.4.1.1. La razón áurea y el pentagrama . . . . . . . . . . . . . . . . 27 1.4.1.2. Medimos con números racionales . . . . . . . . . . . . . . . 28 1.4.2. Hacer matemáticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.4.3. Algunas razones para estudiar matemáticas . . . . . . . . . . . . . . . 30 1.4.4. Lo que debes haber aprendido en este Capítulo. Lecturas adicionales . . 32 2. Funciones elementales 33 2.1. Funciones reales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1.1. Operaciones con funciones . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.2. Intervalos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2. Estudio descriptivo de las funciones elementales . . . . . . . . . . . . . . . . . 39 2.2.1. Funciones polinómicas y funciones racionales . . . . . . . . . . . . . . 39 2.2.2. Raíces de un número real . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.3. Potencias racionales . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2.4. Logaritmos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2.5. Exponenciales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.5.1. Interés compuesto . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.5.2. Crecimiento demográfico . . . . . . . . . . . . . . . . . . . 42 2.2.6. Función potencia de exponente real a . . . . . . . . . . . . . . . . . . 42 2.2.7. Funciones trigonométricas . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2.7.1. Medida de ángulos . . . . . . . . . . . . . . . . . . . . . . . 43 2.2.7.2. Funciones seno y coseno . . . . . . . . . . . . . . . . . . . 44 2.2.7.3. Propiedades de las funciones seno y coseno . . . . . . . . . 45 2.2.7.4. Las funciones tangente, cotangente, secante y cosecante . . . 46 2.2.7.5. Las funciones arcoseno, arcocoseno y arcotangente . . . . . 46 2.2.8. Las funciones hiperbólicas . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.8.1. Las funciones hiperbólicas inversas . . . . . . . . . . . . . . 49 2.2.9. Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2.10. Ejercicios resueltos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.3. Sobre el concepto de función . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.3.1. El desarrollo del Álgebra y la invención de los logaritmos . . . . . . . 61 2.4. Lo que debes haber aprendido en este capítulo . . . . . . . . . . . . . . . . . . 63 3. Números complejos. Exponencial compleja Universidad de Granada Dpto. de Análisis Matemático 64 Prof. Javier Pérez Cálculo diferencial e integral Índice general IV 3.1. Un poco de historia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2. Operaciones básicas con números complejos . . . . . . . . . . . . . . . . . . . 65 3.2.1. Comentarios a la definición de número complejo . . . . . . . . . . . . 66 3.2.2. Forma cartesiana de un número complejo . . . . . . . . . . . . . . . . 66 p 3.2.3. Comentarios a la definición usual i D 1 . . . . . . . . . . . . . . . 67 3.2.4. No hay un orden en C compatible con la estructura algebraica . . . . . 68 3.3. Representación gráfica. Complejo conjugado y módulo . . . . . . . . . . . . . 68 3.3.1. Forma polar y argumentos de un número complejo . . . . . . . . . . . 70 3.3.2. Observaciones a la definición de argumento principal . . . . . . . . . . 72 3.3.2.1. Fórmula de De Moivre . . . . . . . . . . . . . . . . . . . . 73 3.3.3. Raíces de un número complejo . . . . . . . . . . . . . . . . . . . . . . 74 3.3.3.1. 3.3.3.2. Notación de las raíces complejas . . . . . . . . . . . . . . . 75 p p p La igualdad n z n w D n zw . . . . . . . . . . . . . . . . . 76 3.3.4. Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3.5. Ejercicios resueltos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.4. Funciones elementales complejas . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.4.1. La función exponencial . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.4.2. Logaritmos complejos . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.4.3. Potencias complejas . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.4.4. Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.4.5. Ejercicios resueltos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.5. Aplicaciones de los números complejos . . . . . . . . . . . . . . . . . . . . . 97 3.5.1. Movimiento armónico simple . . . . . . . . . . . . . . . . . . . . . . 97 3.5.2. Circuitos eléctricos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.5.3. Procesamiento digital de señales . . . . . . . . . . . . . . . . . . . . . 101 4. Funciones Continuas y límite funcional 102 4.1. Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.2. Continuidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2.1. Propiedades básicas de las funciones continuas . . . . . . . . . . . . . 104 4.2.2. Propiedades locales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3. Teorema de Bolzano. Supremo e ínfimo . . . . . . . . . . . . . . . . . . . . . 108 4.3.1. La propiedad del supremo . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.2. Propiedad de extremo inferior . . . . . . . . . . . . . . . . . . . . . . 110 Universidad de Granada Dpto. de Análisis Matemático Prof. Javier Pérez Cálculo diferencial e integral Índice general V 4.3.3. Consecuencias del teorema de Bolzano . . . . . . . . . . . . . . . . . 112 4.3.3.1. Continuidad y monotonía . . . . . . . . . . . . . . . . . . . 114 4.3.4. Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.3.5. Ejercicios resueltos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4. Continuidad en intervalos cerrados y acotados . . . . . . . . . . . . . . . . . . 128 4.4.1. Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.4.2. Ejercicios resueltos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.5. Límite funcional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.5.1. Límites laterales de una función en un punto . . . . . . . . . . . . . . 134 4.5.2. Límites infinitos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.5.2.1. Funciones divergentes en un punto . . . . . . . . . . . . . . 135 4.5.2.2. Límites en infinito . . . . . . . . . . . . . . . . . . . . . . . 136 4.5.2.3. Funciones divergentes en infinito . . . . . . . . . . . . . . . 136 4.6. Álgebra de límites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.6.1. Límites y discontinuidades de funciones monótonas . . . . . . . . . . . 139 4.6.2. Comportamientos asintóticos de las funciones elementales . . . . . . . 140 4.6.2.1. Límites de exponenciales y logaritmos . . . . . . . . . . . . 140 4.7. Indeterminaciones en el cálculo de límites . . . . . . . . . . . . . . . . . . . . 141 4.7.1. Ejercicios propuestos . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.7.2. Ejercicios resueltos . . . . . . . . . . . . . . . . . .

Los consejos tienen una finalidad meramente orientativa, sin entrar a juzgar la profesionalidad de los docentes de nuestras universidades. Los apuntes, así como el resto de contenidos que son elaborados por los usuarios de la web, en ningún caso son atribuibles a los profesores. Los nombres aparecen exclusivamente a título informativo como referencia para el usuario. Los modelos de examen de cursos anteriores son compartidos por los propios usuarios, y prentenden servir como guía orientativa de estudio para sus compañeros. Patatabrava.com no puede comprobar la veracidad y fiabilidad de todos estos contenidos académicos. En todo caso, Patatabrava.com se reserva el derecho a eliminar cualquier aportación que no cumpla las condiciones de uso en el aviso legal.

Buscador general de apuntes
X

Identifícate para entrar

¿Problemas con la contraseña?

¿Todavía no eres de Patatabrava?