Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Modelado de ecuaciones diferenciales de primer orden, Apuntes de Matemáticas

Asignatura: Circuitos Digitales, Profesor: , Carrera: Ingeniería Electrónica de Comunicaciones, Universidad: UCM

Tipo: Apuntes

2012/2013
En oferta
30 Puntos
Discount

Oferta a tiempo limitado


Subido el 25/08/2013

jjeanton
jjeanton 🇪🇸

5

(1)

5 documentos

1 / 41

Documentos relacionados


Vista previa parcial del texto

¡Descarga Modelado de ecuaciones diferenciales de primer orden y más Apuntes en PDF de Matemáticas solo en Docsity! MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN 3.1 Ecuaciones lineales 3.2 Ecuaciones no lineales 3.3 Sistemas de ecuaciones lineales y no lineales Ejercicios de repaso ‘@B - - En la sección 1.3 explicamos que muchos modelos matemáticos, como los del creci- miento demográfico, la desintegración radiactiva, el interés compuesto continuamente, l las reacciones químicas, un líquido que sale por un agujero en un tanque, la velocidad de caída de un cuerpo, la rapidez de memorización y la corriente en un circuito en serie, son ecuaciones diferenciales de primer orden. Ahora ya podemos resolver algunas de las ecuaciones diferenciales, lineales y no lineales, que surgen con frecuen- cia en las aplicaciones. El capítulo termina con el tema de los sistemas de ecuaciones diferenciales de primer orden como modelos matemáticos. 71 7 2 CAPíTULO 3 MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN ECUACIONES LINEALES w Crecimiento y decaimiento exponencial n Periodo medio n Datación con radiocarbono w Ley de Newton del enji-iamiento w Mezclas n Circuitos en serie n Tirmino transitorio H Término de estado estable Crecimiento y decaimiento El problema de valor inicial dx - kx,z- x(to) = xo, en donde k es una constante de proporcionalidad, se emplea como modelo de distintos fenómenos donde intervienen crecimiento o decrecimiento (desintegración). En la sección 1.3 describimos que, en biología, se ha observado que en cortos periodos la tasa de crecimiento de algunas poblaciones (como las de bacterias o de animales pequeños) es proporcional a la población presente en cualquier momento. Si conocemos una población en cierto momento inicial arbitrario, que podemos considerar definido por t = 0, la solución de (1) nos sirve para predecir la poblacion en el futuro -esto es, para t > 0-. En física, un problema de valor inicial como las ecuaciones (1) puede servir de modelo para calcular aproximadamente la cantidad residual de una sustancia que se desintegra o decae en forma radiactiva. Esa ecuación diferencial (1) también puede describir la temperatura de un objeto que se enfría. En química, la cantidad residual de una sustancia en ciertas reacciones se apega a la ecuación (1). La constante de proporcionalidad k, en (l), se puede hallar resolviendo el problema de valor inicial, con una determinación de x en un momento tl > to. Crecimiento bacteriano Un cultivo tiene una cantidad inicial NO de bacterias. Cuando t = 1 h, la cantidad medida de bacterias es $0. Si la razón de reproducción es proporcional a la cantidad de bacte- rias presentes, calcule el tiempo necesario para triplicar la cantidad inicial de los microor- ganismos. S O L U C I Ó N Primero se resuelve la ecuación diferencial $=kN sujeta a N(O) = NO. A continuación se define la condición empírica N( 1) = $Vs para hallar k, la constante de proporcionalidad. Con ello, la ecuación (2) es separable y lineal, a la vez. Cuando se escribe en la forma podemos ver por inspección que el factor integrante es c-kl Multiplicamos ambos lados de. la ecuación por ese factor y el resultado inmediato es f [eekrN] = 0. Sección 3 .1 Ecuaciones hdes 75 respiración o alimentación cesa. Así, si se compara la cantidad proporcional de C- 14 presente, por ejemplo en un fósil, con la relación constante que existe en la atmosfera, es posible obtener una estimación razonable de su antigüedad. El método se basa en que se sabe que el periodo medio del C-l4 radiactivo es, aproximadamente, 5600 años. Por este trabajo, Libby ganó el Premio Nobel de química en 1960. Su metodo se usó para fechar los muebles de madera en las tumbas egipcias y las envolturas de lino de los rollos del Mar Muerto. Antigüedad de un fósil Se analizó un hueso fosilizado y se encontró que contenía la centésima parte de la cantidad original de C-14. Determine la edad del fósil. S O L U C I Ó N El punto de partida es, de nuevo, A(t) = Acekc. Para calcular el valor de la constante de decaimiento aplicamos el hecho que Ac/ = A(5600), o sea, Ao/ = Aoe5600k. Entonces, 5600k = In i = -In 2, de donde k = -(hr 2)/5600 = -0.00012378; por consiguiente Tenemos, para A(t) = Ao/lOOO, que Ao/lOOO = Aoe 4.000*2378t, de modo que -0.00012378r = In &- = - In 1000. Así In 1000 ’ = 0.00012378 = 55,800 años n En realidad, la edad determinada en el ejemplo 3 está en el límite de exactitud del método. Normalmente esta técnica se limita a unos 9 periodos medios del isótopo, que son unos 50 000 anos. Una razón para ello es que el análisis químico necesario para una determinación exacta del C-l4 remanente presenta obstáculos formidables cuando se alcanza el punto de Ao/lOOO. También, para este método se necesita destruir una muestra grande del espécimen. Si la medición se realiza en forma indirecta, basándose en la radiactividad existente en la muestra, es muy difícil distinguir la radiación que procede del fósil de la radiación normal de fondo. Pero en últimas fechas, los científicos han podido separar al C-l4 del C-12, la forma estable, con los aceleradores de partículas. Cuando se calcula la relación exacta de C-l4 a C-12, la exactitud de este método se puede ampliar hasta antigüedades de 70 a 100 000 años. Hay otras técnicas isotópicas, como la que usa potasio 40 y argón 40, adecuadas para establecer antigüe- dades de varios millones de años. A veces, también es posible aplicar métodos que se basan en el empleo de aminoácidos. Ley de Newton del enfriamiento En la ecuación (10) de la sección 1.3 vimos que la formulación matemática de la ley empírica de Newton, relativa al enfriamiento de un objeto, se expresa con la ecuación diferencial lineal de primer orden en que k es una constante de proporcionalidad, T(r) es la temperatura del objeto cuando t > 0 y T,,, es la temperatura ambiente; o sea, la temperatura del medio que rodea al objeto. En el ejemplo 4 supondremos que T,,, es constante. 76 CAPíTULO 3 MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN m Enfriamiento de un pastel Al sacar un pastel del horno, su temperatura es 300°F. Después de 3 minutos, 2OO’F. ¿En cuanto tiempo se enfriará hasta la temperatura ambiente de 7O”F? SOLUCIÓN En la ecuación (3) vemos que T,,, = 70. Por consiguiente, debemos resolver el problema de valor inicial g= k(T- 70), T(O) = 300 y determinar el valor de k de tal modo que T(3) = 200. La ecuación (4) es lineal y separable, a la vez. Al separar las variables, & = kdt, cuyo resultado es ln/T - 701 = kt + cl, y así T = 70 + c2ekt. Cuando t = 0, T= 300, de modo que 300 = 70 + c2 define a c2 = 230. Entonces, T= 70 + 230 ekt. Por ultimo, la determinación T(3) = 200 conduce a e3k = g, osea,k=fln~=-O.19018.Así T(t) = 70 + 230e-0.19018’. (5) Observamos que la ecuación (5) no tiene una solución finita a T(t) = 70 porque límt + m T(t) = 70; no obstante, en forma intuitiva esperamos que el pastel se enfríe al transcurrir un intervalo razonablemente largo. ¿Cuán largo es “largo “‘7 No nos debe inquietar el hecho de que el modelo (4) no se apegue mucho a nuestra intuición física. Las partes u) y b) de la figura 3.3 muestran que el pastel estará a la temperatura ambiente pasada una media hora. w (4 TV) 1 (min) 75" 20.1 74" 21.3 73" 22.8 72" 24.9 71” 28.6 70.5" 32.3 (b) F IGURA 3.3 Sección 3 .1 Ecuaciones h-des 77 Mezclas Al mezclar dos fluidos, a veces se originan ecuaciones diferenciales lineales de primer orden. Cuando describimos la mezcla de dos salmueras (Sec. 1.3), supusimos que la razón con que cambia la cantidad de sal, A’(r), en el tanque de mezcla es una razón neta: dA t= =R,-R2 (6) En el ejemplo 5 resolveremos la ecuación (12) de la sección 1.3. Mezcla de dos soluciones de sal Recordemos que el tanque grande de la sección 1.3 contenía inicialmente 300 galones de una solución de sahnuera. Al tanque entraba y salía sal porque se le bombeaba una solución a un flujo de 3 gal/min, se mezclaba con la solución original, y salía del tanque con un flujo de 3 gabmin. La concentración de la solución entrante era 2 lb/gal; por consiguiente, la entrada de sal era RI = (2 lb/gal) . (3 gal/min) = 6 lb/min, del tanque salía con una razón RZ = (3 gal/min) . (N300 lb/gal) = A/l OO lb/min. A partir de esos datos y de la ecuación (6) obtuvimos la ecuación (12) de la sección 1.3. Surge esta pregunta: si había 50 Ib de sal disueltas en los 300 galones iniciales, ¿cuánta sal habrá en el tanque pasado mucho tiempo? SOLUCIÓN Para hallar A(t), resolvemos el problema de valor inicial 4+-$-, A(O) = 50. Aquí observamos que la condición adjunta es la cantidad inicial de sal, A(O) = 50, y no la cantidad inicial de líquido. Como el factor integrante de esta ecuación diferencial lineal es e “roo, podemos formular la ecuación así: Al integrar esta ecuación y despejar A se obtiene la solución general A = 600 + ce-f’1oo. Cuando t = 0, A = 50, de modo que c = -550. Entonces, la cantidad de sal en el tanque en el momento t está definida por A(t) = 600 - 550e-f’1m. (7) Esta solución se empleó para formar la tabla de la figura 3.4b). En la ecuación (7) y en la figura 3.4 también se puede ver, que A + 600 cuando t + m. Esto es lo que cabría esperar en este caso; pasado un largo tiempo, la cantidad de libras de sal en la solución debe ser (300 ga1)(2 lb/gal) = 600 lb. 8 En el ejemplo 5 supusimos que la razón con que entra la solución al tanque es la misma que la razón con que sale. Sm embargo, el caso no necesita ser siempre el mismo; la sahnuera mezclada se puede sacar a un flujo mayor o menor que el flujo de entrada de la otra solución; por ejemplo, si la solución bien mezclada del ejemplo 5 sale a un flujo menor, digamos de 2 gal/min, se acumulará líquido en el tanque a una tasa de (3 - 2) gal/min = 1 gal/min. Cuando 80 CAPíTULO 3 MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN Al integrar cada lado de esta ecuación y despejar i obtenemos i = f -t ce-“*. Si i(O) = 0, entonces 0 = 4 + c, o bien c = - 4; por consiguiente, la respuesta es i(t) = g - g e-20r. A partir de la ecuación (4) de la sección 2.3, podemos formular una solución general de (8): eW)‘E(t) dt + &Wr. (11) En especial, cuando I?((r) = EO es una constante, la ecuación (ll) se transforma en i(t) = $ + Ce-WW. w Observamos que cuando t + 00, el segundo término de la ecuación (12) tiende a cero. A ese término se le suele llamar término transitorio; los demás miembros se llaman parte de estado estable (o estado estacionario) de la solución. En este caso, EdR también se denomina corriente de estado estable o de estado estacionario; cuando el tiempo adquiere valores grandes, resulta que la corriente está determinada tan sólo por la ley de Ohm, E = iR. Examinemos la ecuación diferencial en el ejemplo 1, que describe el crecimiento de un cultivo de bacterias. La solución, NQ) = NOeo.4055’, del problema de valor inicial dN/dt = kN, N(to) = No es una función continua; pero en el ejemplo se habla de una población de bacterias, y el sentido común nos dice que N sólo adopta valores enteros positivos. Además, la población no crece en forma continua, -esto es, a cada segundo, microsegundo, etc.- como predice la función N(t) = Noe0.4055t; puede haber intervalos, [t,, t2], durante los que no haya crecimiento alguno. Quizá, entonces, la gráfica de la figura 3.7a) sea una descripción más real de N que la gráfica de una función exponencial. Muchas veces es más cómodo que exacto usar una función continua en la descripción de un fenómeno discreto. Sin embargo, para ciertos fines nos podemos dar por satisfechos si el modelo describe con gran exactitud el sistema, considerado macroscópi- comente en el transcurso del tiempo, como en las figuras 3.7b) y c), y no considerado microscópicamente. (4 (b) (cl FIGURA 3.7 Sección 3.1 Ecuaciones hwaies 81 1. Se sabe que la población de cierta comunidad aumenta eon una razón proporcional a la cantidad de personas que tiene en cualquier momento. Si la población se duplicó en cinco anos, Len cuanto tiempo se triplicará y cuadruplicará? 2. Suponga que la población de la comunidad del problema 1 es de 10 000 después de tres anos. ¿Cuál era la población inicial? ¿Cuál será en 10 anos? 3 . La población de una comunidad crece con una tasa proporcional a la población en cualquier momento. Su población inicial es 500 y aumenta el 15% en 10 anos. ¿Cuál será la población pasados 30 anos? 4 . En cualquier momento dado la cantidad de bacterias en un cultivo crece a una tasa propor- cional a las bacterias presentes. Al cabo de tres horas se observa que hay 400 individuos. Pasadas 10 horas, hay 2000 especímenes. ¿Cuál era la cantidad inicial de bacterias? 5. El Pb-209, isótopo radiactivo del plomo, se desintegra con una razón proporcional a la cantidad presente en cualquier momento y tiene un periodo medio de vida de 3.3 horas. Si al principio había 1 gramo de plomo, ¿cuánto tiempo debe transcurrir para que se desintegre el 90%? 6. Cuando t = 0, había 100 miligramos de una sustancia radiactiva. Al cabo de 6 horas, esa cantidad disminuyó el 3%. Si la razón de desintegración, en cualquier momento, es proporcional a la cantidad de la sustancia presente, calcule la cantidad que queda después de 2 horas. 7 . Calcule el periodo medio de vida de la sustancia radiactiva del problema 6. 8. a) El problema de valor inicial dAldt = kA, A(O) = Ao es el modelo de desintegración de una sustancia radiactiva. Demuestre que, en general, el periodo medio de vida, T, de la sustancia es T = -(in 2)lk. b) Demuestre que la solución del problema de valor inicial en la parte a) se puede escribir A(t) = Ao2-T 9. Cuando pasa un rayo vertical de luz por una sustancia transparente, la razón con que decrece su intensidad Z es proporcional a Z(t), donde t representa el espesor, en pies, del medio. En agua de mar clara, la intensidad a 3 ft bajo la superficie, es el 25% de la intensidad inicial le del rayo incidente. iCuál es la intensidad del rayo a 15 ft bajo la superficie? 10. Cuando el interés se capitaliza (o compone) continuamente, en cualquier momento la cantidad de dinero, S, aumenta a una tasa proporcional a la cantidad presente: dSldt = rS, donde r es la tasa de interés anual [Ec. (6), Sec. 1.31. a) Calcule la cantidad reunida al término de cinco anos, cuando se depositan $5000 en una cuenta de ahorro que rinde el 5$% de interés anual compuesto continuamente. b) ¿En cuantos años se habrá duplicado el capital inicial? c) Con una calculadora compare la cantidad obtenida en la parte a) con el valor de Este valor representa la cantidad reunida cuando el interés se capitaliza ca& trimestre. ll. En un trozo de madera quemada o carbón vegetal se determinó que el 85.5% de su C-l4 se había desintegrado. Con la información del ejemplo 3 determine la edad aproximada de 82 CAPíTULO 3 MODEIADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN la madera. Éstos son precisamente los datos que usaron los arqueólogos para fechar los murales prehistókos de una caverna en Lascaux, Francia. 12. Un termómetro se lleva de un recinto interior hasta el ambiente exterior, donde la temperatura del aire es 5°F. Después de un minuto, el termómetro indica 55”F, y después de cinco marca 30°F. ¿Cuál era la temperatura del recinto interior? 13. Un termómetro se saca de un recinto donde la temperatura del aire es 70°F y se lleva al exterior, donde la temperatura es 10°F. Pasado j minuto el termómetro indica 50°F. ¿Cuál es la lectura cuando t = 1 min? ¿Cuánto tiempo se necesita para que el termómetro llegue a 15”F? 1 4 . La fórmula (3) también es válida cuando un objeto absorbe calor del medio que le rodea. Si una barra metálica pequeña, cuya temperatura inicial es 20°C se deja caer en un recipiente con agua hirviente, ¿cuánto tiempo tardara en alcanzar 90°C si se sabe que su temperatura aumentó 2°C en un segundo? ¿Cuánto tiempo tardará en llegar a 98”C? 1 5 . Se aplica una fuerza electromotriz de 30 v aun circuito en serie LR con 0.1 h de inductancia y 50 R de resistencia. Determine la corriente i(t), si i(O) = 0. Halle la corriente cuando t 4 00. 16. 17 . 18. 19 . 20. 21. 22. Resuelva la ecuación (8) suponiendo que E(t) = EO sen wt y que i(O) = io. Se aplica una fuerza electromotriz de 100 volts a un circuito en serie RC, donde la resistencia es 200 R y la capacitancia es lo4 f. Determine la carga q(t) del capacitar, si q(O) = 0. Halle la corriente i(t). Se aplica una fuerza electromotriz de 200 v a un circuito en serie RC, en que la resistencia es 1000 Q y la capacitancia es 5 x 10” f. Determine la carga q(t) del capacitar, si i(O) = 0.4 amp. Halle la carga cuando t + 00. Se aplica una fuerza electromotriz 120, Osts20 E(t) = oL t>20 a un circuito en serie LR, en que la inductancia es 20 h y la resistencia es 2 IR. Determine la corriente, i(r), si i(O) = 0. Suponga que un circuito en serie RC tiene un resistor variable. Si la resistencia, en cualquier momento t es R = kr + kzt, donde kl y k2 > 0 son constantes conocidas, la ecuación (10) se transforma en (k, + k,t) ” + $q = E(t). Demuestre que si E(t) = EO y q(O) = qo, entonces q(f) = -W + tqo - EoC) Un tanque contiene 200 1 de agua en que se han disuelto 30 g de sal y le entran 4 L/min de solución con 1 g de sal por litro; está bien mezclado, y de él sale líquido con el mismo flujo (4 L/min). Calcule la cantidad A(t) de gramos de sal que hay en el tanque en cualquier momento t. Resuelva el problema 21 suponiendo que entra agua pura. Sección 3.1 Ecuaciones iinea!es 85 AñO Población 1790 3.929 1800 5.308 1810 7.240 1820 9.638 1830 12.866 1840 17.069 1850 23.192 1860 31.433 1870 38.558 1880 50.156 1 8 9 0 62.948 1900 75.996 1910 91.972 1920 105.711 1930 122.775 1940 131.669 1950 150.697 a) Con esos datos formule un modelo del tipo z=kP, P(O) = Po. b) Forme una tabla donde se compare la población predicha por el modelo de la parte a) con 10s censos de población. Calcule el error y el porcentaje de error para cada par de datos. Problemas para discusión 34. Suponga que un forense que llega a la escena de un crimen ve que la temperatura del cadáver es 82°F. Proponga datos adicionales, pero verosímiles, necesarios para establecer una hora aproximada de la muerte de la víctima, aplicando la ley de Newton del enfria- miento, ecuación (3). 35. El Sr. Pérez coloca al mismo tiempo dos tazas de café en la mesa del desayunador. De inmediato vierte crema en su taza, con una jarra que estaba desde hace mucho en esa mesa. Lee el diario durante cinco minutos y toma su primer sorbo. Llega la Sra. Pérez cinco minutos después de que las tazas fueron colocadas en la mesa, vierte crema la suya y toma un sorbo. Suponga que la pareja agrega exactamente la misma cantidad de,crema. ¿Quién y por qué toma su café más caliente? Base su aseveración en ecuaciones matemáticas. 36. Un modelo lineal de la difusión de una epidemia en una comunidad de n personas es el problema de valor inicial dx- = r(n - x),d t 40) = xo> en donde x(t) representa la población cuando el tiempo es t, r > 0 es una rapidez constante y xa es un entero positivo pequeño (por ejemplo, 1). Explique por qué, según este modelo, 86 CAPíTULO 3 MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN todos los individuos contraerán la epidemia. Determine en cuanto tiempo la epidemia seguirá su curso. ECUACIONES NO LINEALES W Modelos demográficos n Rapidez relativa de crecimiento n Ecuación diferencial logística n Función logística W Reacciones químicas de segundo orden Modelos demográficos Si P(t) es el tamaño de una población en el momento t, el modelo del crecimiento exponencial comienza suponiendo que dPldt = kP para cierta k > 0. En este modelo, la tasa específica o relativa de crecimiento, definida por dPldt P (1) se supone constante, igual a k. Es difícil encontrar casos reales de un crecimiento exponencial durante largos periodos, porque en cierto momento los recursos limitados del ambiente ejercerán restricciones sobre el crecimiento demográfico. Así, cabe esperar que la razón (1) disminuya a medida que P aumenta de tamaño. La hipótesis que la tasa con que crece o decrece una población sólo depende del numero presente y no de mecanismos dependientes del tiempo, como los fenómenos estacionales (consúltese el problema 18, en los ejercicios 1.3), se puede enunciar como sigue: !E$e = f(P) 0 sea $ = Pf(P). (2) Esta ecuación diferencial, que se adopta en muchos modelos demográficos animales, se llama hipótesis de dependencia de densidad. Ecuación logística Supóngase que un medio es capaz de sostener, como máximo, una cantidad K determinada de individuos en una población. Dicha cantidad se llama capacidad de sustento, o de sustentación, del ambiente. Entoncesf(K) = 0 para la fknciónfen la ecuación (2) y se escribe tambiénf(0) = r. En la figura 3.9 vemos tres funciones que satisfacen estas dos f(P) 4 . K P F IGURA 3.9 Sección 3.2 Ecuaciones no hmales 87 condiciones. La hipótesis más sencilla es que f(P) es linea!; esto es, que f(P) = CIP + ~2. Si aplicamos las condiciones f(O) = r y f(K) = 0, tenemos que c2 = r y CI = -rlK, respectivamente, y f adopta la forma f(P) = r - (r/K)P. Entonces la ecuación (2) se transforma en $=P r-XP . ( 1 (3) Si redefinirnos las constantes, la ecuación no lineal (3) es igual a la siguiente: (4) Alrededor de 1840, P. F. Verhufst, matemático y biólogo belga, investigó modelos mate- máticos para predecir la población humana en varios países. Una de las ecuaciones que estudió fue la (4), con a > 0 y b > 0. Esa ecuación se llamó ecuación logística y su solución se denomina función logística. La gráfica de una función logística es la curva logística. La ecuación diferencial dPldt = kP no es un modelo muy fiel de la población cuando ésta es muy grande. Cuando las condiciones son de sobrepoblación, se presentan efectos negativos sobre el ambiente (como contaminación y exceso de demanda de alimentos y combustible). Esto puede tener un efecto inhibidor en el crecimiento demográfico. Según veremos a conti- nuación, la solución de (4) está acotada cuando t + =. Si se rearregla esa ecuación en la forma dP/dt = aP - bP2, el término no lineal -bP2, se puede interpretar como un término de “inhibición” o “competencia.” Asimismo, en la mayor parte de las aplicaciones la constante positiva a es mucho mayor que b. Se ha comprobado que las curvas logísticas predicen con bastante exactitud las pautas de crecimiento de ciertos tipos de bacterias, protozoarios, pulgas de agua (Daphnia) y moscas de la fruta (Drosophila) en un espacio limitado. Solución de la ecuación logística Uno de los métodos para resolver la ecuación (4) es por separación de variables. Al descomponer el lado izquierdo de dPIP(a - bP) = dt en fracciones parciales e integrar, se obtiene lla+ bla- d P = d tP a-bP 1 iln[PJ - ilnla - bPI = t + c P- = clea’.a - bP Como consecuencia de la última ecuación, p(t) = war = acl 1 + bcle”’ bc, + emor’ Si P(O) = PO, Po + alb, llegamos a ct = Pol(a - bP0) y así, sustituyendo y simplificando, la solución es 90 CAPíTULO 3 MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN ta) t (days) x (number infected) 4 50 (observed) 5 1 2 4 6 276 7 507 8 73s 9 882 10 953 (b) FIGURA 3.11 en donde a y b son constantes. Por separación de variables se comprueba con facilidad (consúltese el problema 5 en los ejercicios 3.2) que una solución de la ecuación (6) es p@) = &be-ce?‘, (7) en donde c es una constante arbitraria. Cuando b > 0, P + edb cuando t + 00, mientras que cuandob<Oyc>O,P+Ocuandot+ 00. La gráfica de la función (7) se llama curva de Gompertz y se parece mucho a la gráfica de la función logística. La figura 3.12 muestra dos formas de la gráfica de P(t). Las funciones como la ecuación (7) surgen, por ejemplo, al describir el aumento o la disminución de ciertas poblaciones, en el crecimiento de tumores, en predicciones actuariales y en el incremento de las utilidades por la venta de un producto comercial. Reacciones químicas Supongamos que se combinan a gramos de la sustancia A con b gramos de la sustancia B. Si, para formar X(t) gramos de la sustancia C se necesitan Mpartes de A y N partes de B, los gramos de las sustancias A y B que quedan en cualquier momento son, respectivamente, a-MX y b-N M+N M+NX’ Según la ley de acción de masas, la rapidez de reacción se apega a +NX )( (8) Sección 3.2 Ecuaciones no l ineales 91 6) 7 (b) FIGURA 3.12 Sacamos a M(M + N) como factor común del primer factor, a NI(A4 + N) del segundo e introducimos una constante de proporcionalidad, k > 0, con lo cual la ecuación (8) adquiere la forma % = k(a - X)(/3 - X), en que ct = a(M + N)IM y p = b(M + N)IN. De acuerdo con la ecuación (7) de la sección 1.3, una reacción química que responde a la ecuación diferencial no lineal (9) se llama reacción de segundo orden. Reacción química de segundo orden Cuando se combinan dos sustancias, A y B, se forma un compuesto C. La reacción entre ambas es tal que, por cada gramo de A se usan 4 gramos de B. Se observa que a los 10 minutos se han formado 30 gramos del producto C. Calcule la cantidad de C en función del tiempo si la velocidad de la reacción es proporcional a las cantidades de A y B que quedan y al principio hay 50 gramos de A y 32 gramos de B. ¿Qué cantidad de compuesto C hay a los 15 minutos? Interprete la solución cuando t + w. S O L U C I Ó N Sean X(t) los gramos del compuesto C presentes cuando el tiempo es f. Está claro que X(O) = 0 y X( 10) = 30 g. Si, por ejemplo, hay 2 gramos del producto C, hemos debido usar, digamos, a gramos de A y b gramos de B, de tal modo que a + b = 2 y b = 4a; por consiguiente, debemos emplear a = 2 = 2(‘) g de la sustancia A y b = 5 = 2(:) de B. En general, para obtener Xgramos de C debemos implear $gdeA y $YgdeB. 92 CAPíTULO 3 MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN Entonces, las cantidades de A y B que quedan en cualquier momento son 50-5 y 32-;X, respectivamente. Sabemos que la rapidez de formación del compuesto C está definida por Para simplificar las operaciones algebraicas, sacaremos a + como factor común del primer término, 0 del segundo e introduciremos la constante de proporcionalidad: 9 = k(250 - X)(40 - X). Separamos variables y por fracciones parciales llegamos a -exdX+ exdX= kdt. Al integrarla obtenemos 250 -x0 sea 210krm=c2e . (10) Cuando t = 0, X= 0, y en consecuencia CL = y. Cuando X= 30 g cuando t = 10, vemos que 21 Ok = 6 In E = 0.1258. Con estos datos despejamos X de la última de las ecuaciones (10): X(t) = 1000 1 _ e-0.1258r 25 _ 4e-0.1258t’ (11) En la figura 3.13 se muestra el comportamiento de X en íkncjón del tiempo. Según la tabla de esa figura y la ecuación (1 l), está claro que X + 40 cuando t + 00. Esto quiere decir que se forman 40 gramos de la sustancia C y que quedan 50-$(40)=42gdeA y 32-4(40)=OgdeB. w No obstante contar con la integral 20 en la Tabla de integrales al final del libro, podría ser más útil la forma alternativa, en función de la tangente hiperbólica inversa ha a = s! tah-’ !! + c, al resolver algunos de los problemas en los ejercicios 3.2. Sección 3.2 Ecuaciones no hea~es 95 (vea el problema 13, en 10s ejercicios .13). Suponga que el punto inicial en el eje y es (0, 10) y que la longitud de la cuerda es s = 10 pies. 14. Según la ley de Stefan de la radiación, la rapidez de cambio de la temperatura de un objeto cuya temperatura absoluta es T, es $ = k(T4 - T,,,4), en donde Tm es la temperatura absoluta del medio que lo rodea. Determine una solución de esta ecuación diferencial. Se puede demostrar que, cuando T - T,,, es pequeña en comparación con T,,,, esta ecuación se apega mucho a la ley de Newton del enfriamiento [Ec. (lo), Sec. 1.31. 15. Una ecuación diferencial que describe la velocidad v de una masa m que cae cuando la resistencia que le opone el aire es proporcional al cuadrado de la velocidad instantánea, es rn-=rng-ku2, d t en que k es una constante de proporcionalidad positiva. a) Resuelva esta ecuación sujeta a la condición inicial v(O) = vg. b) Determine la velocidad límite, o terminal, de la masa. c) Si la distancia s se relaciona con la velocidad de caída mediante dsisldt = v, deduzca una ecuación explícita de s, sabiendo que s(O) = SO. 16. a) Deduzca una ecuación diferencial para describir la velocidad v(t) de una masa m que se sumerge en agua, cuando la resistencia del agua es proporcional al cuadrado de la velocidad instantánea y, al mismo tiempo, el agua ejerce una fuerza de flotación hacia arriba, cuya magnitud la define el principio de Arquímedes. Suponga que la dirección positiva es hacia abajo. b) Resuelva la ecuación diferencial que obtuvo en la parte a). c) Calcule la velocidad límite, o terminal, de la masa que se hunde. 17. a) Si se sacan o “cosechan” h animales por unidad de tiempo (h constante), el modelo demográfico P(t) de los animales en cualquier momento t es $=P(a-bP)-h, P(O) = Po, en donde a, b, h y PO son constantes positivas. Resuelva el problema cuando a = 5, b = 1 yh=4. b) Use un programa para determinar el comportamiento a largo plazo de la población en lapartea),cuandoPo>4, 1 <Po<4yO<P,~<l. c) Si la población se extingue en un tiempo finito, determine ese tiempo. 18. a) Use los datos censales de 1790, 1850 y 1910, para Estados Unidos (tabla anexa al problema 33, ejercicios 3.1) y forme un modelo demográfico del tipo $ = P(a - bP), P(O) = Po. b) Forme una tabla para comparar la población predicha por el modelo en la parte a) con la población según el ceso. Calcule el error y el porcentaje de error con ca& par de datos. 9 6 CAPíTULO 3 MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN 1 9 . Determine las trayectorias ortogonales de la familia y = l/(x + CI) (problema 32, ejercicios 3.1). Use una graficadora para trazar ambas familias en el mismo conjunto de ejes coordenados. 20. Si se supone que una bola de nieve se funde de tal modo que su forma siempre es esférica, un modelo matemático de su volumen es en donde S es el área superficial de una esfera de radio r, y k < 0 es una constante de proporcionalidad (problema 19, ejercicios 1.3). a) Replantee la ecuación diferencial en términos de V(t). b) Resuelva la ecuación en la parte a), sujeta a la condición inicial V(O) = Vo. c) Si r(O) = ro, determine el radio de la bola de nieve en función del tiempo t. ¿Cuándo desaparece la bola de nieve? 21. La ecuación diferencial &-= -X+W dx Y describe la forma de una curva plana, C, que refleja todos los rayos de luz que le llegan y los concentra en el mismo punto (problema 17, ejercicios 1.3). Hay varias formas de resolver esta ecuación. a) Primero, compruebe que la ecuación diferencial sea homogénea (Sec. 2.4). Demuestre que la sustitución y = ux da como resultado udu dx -\/l+ui(l-ViTTr)=x* Use un sistema algebraico de computación (SAC) o alguna sustitución adecuada para integrar el lado izquierdo de la ecuacion. Demuestre que la curva C debe ser una parábola con foco en el origen, simétrica con respecto al eje X. b) A continuación demuestre que la primera ecuación diferencial se puede escribir en la forma alternativa y = 2xy’ + Y(JJ’)~. Sea w = J? y aplique el resultado del problema 54, ejercicios 1.1, para resolver la ecuación diferencial resultante. Explique cualquier diferencia que exista entre esta respuesta y la que obtuvo en la parte a). c) Por último, demuestre que la primera ecuación diferencial también se puede resolver con la sustitución u = x2 + y’. 22. Un modelo sencillo de la forma de un tsunami o maremoto es 1 dW2( - ) =2w2-- w3,zdx en donde W(x) es la altura de la ola en función de su posición relativa a un punto determinado en alta mar. a) Por inspección, determine todas las soluciones constantes de la ecuación diferencial. b) Use un sistema algebraico de computación para determinar una solución no constante de la ecuación diferencial. c) Con una graficadora, trace todas las soluciones que satisfagan la siguiente condición inicial: W(O) = 2. Sección 3.3 Sistemas de ecuaciones lineoles y no lineales 97 \/.\, *-‘y t caída libre FIGURA 3.14 Problema para discusión 23. Un paracaidista que pesa 160 Ib, se arroja de un avión que vuela a 12 000 ft de altura. Después de caer libremente durante 15 s, abre su paracaídas. Suponga que la resistencia del aire es proporcional a 2 cuando no se abre el paracaídas y a la velocidad v después de abrirlo (Fig. 3.14). Para una persona con este peso, los valores normales de la constante k en los modelos del problema 27, ejercicios 3.1, y el problema 15 anterior, son k = 7.857 y k = 0.0053, respectivamente. Calcule el tiempo que tarda el paracaidista en llegar al suelo. iCuál es su velocidad de impacto con el suelo? SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES n Sistema de ecuaciones diferenciales como modelo matemático W Sistemas lineales y no lineales W Desintegración radiactiva n Mezclas n Modelo de Lotka-Volterra depredador-presa n Modelos de competencia W Redes eléctricas Hasta ahora, todos los modelos matemáticos descritos han sido ecuaciones diferenciales únicas. Una sola ecuación diferencial puede describir una población en un ambiente; pero si hay, por ejemplo, dos especies que interactúan y compiten en el mismo ambiente (por ejemplo, conejos y zorros), el modelo demográfico de sus poblaciones x(t) y y(t) podría ser un sistema de dos ecuaciones diferenciales de primer orden, como (1) 100 CAPíTULO 3 MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN dx2 _ 2 2- -dt 25x1 - 25x2. Observamos que el sistema anterior tiene las condiciones iniciales x](O) = 25, ~(0) = 0. Modelo depredador-presa Supongamos que dos especies animales interactúan en el mismo ambiente o ecosistema; la primera sólo come plantas y la segunda se alimenta de la primera. En otras palabras, una especie es depredador y la otra es la presa; por ejemplo, los lobos cazan a los caribús que se alimentan de pasto, los tiburones devoran a los peces pequeños y el búho de las nieves persigue a un roedor ártico llamado Zemming. Para fines de nuestra descripción, imaginemos que los depredadores son zorros y las presas, conejos. Sean x(t) y JJ(~) las poblaciones de zorros y conejos en cualquier momento t. Si no hubiera conejos, cabría esperar que los zorros disminuyeran en numero siguiendo la ecuación dx z=-MT a > 0. Al carecer del suministro alimenticio adecuado. Por otro lado, cuando hay conejos en el ecosistema parece lógico imaginar que la cantidad de encuentros o interacciones por unidad de tiempo entre ambas especies, es proporcional simultáneamente a sus poblaciones, x y y; o sea, es proporcional al producto xy. Así, cuando hay conejos, hay alimento para los zorros y éstos aumentan en el ecosistema a una tasa bxy > 0. Al sumar esta tasa a la ecuación (4) se obtiene un modelo demográfico para estos depredadores: dx z-- -ax + bxy. Por otro lado, cuando no hay zorros y si se supone además que las reservas de alimento son ilimitadas, los conejos aumentarían con una rapidez proporcional al número de especímenes existentes en el momento t: &x= d y , d>O. Pero cuando hay zorros, el modelo demográfico para los conejos es la ecuación (6) menos cxy, c > 0; esto es, disminuye según la rapidez con que son comidos: 4z = dy - cxy. Las ecuaciones (5) y (7) forman un sistema de ecuaciones diferenciales no lineales $ = -ax + bxy = x(-a + by) !!Ldt - dy - cxy = y(d - cx), (8) en donde a, b, c y d son constantes positivas. Éste es un sistema famoso de ecuaciones y se llama modelo depredador-presa de Lotka-Volterra. Sección 3.3 Sistemas de ecuaciones l ineales y no l ineales 1 0 1 A excepción de las dos soluciones constantes x(t) = 0, r(r) = 0, y x(t) = dlc, r(f) = ulb, el sistema no lineal (8) no se puede resolver en términos de funciones elementales; sin embargo, podemos analizar en forma cuantitativa y cualitativa esos sistemas. Véase el capítulo 9, Méto- dos numéricos para resolver ecuaciones diferenciales ordinarias. Modelo depredador-presa Supongamos que d xdt = -0.16~ + 0.08~~ dyx = 4.5y - 0.9xy representa un modelo depredador-presa. Como estamos manejando poblaciones, x(t) L 0, y(t) 2 0. La figura 3.16 se obtuvo con ayuda de un programa, y muestra las curvas características de las demografías de depredadores y presas para este modelo, sobrepuestas en los mismos ejes coordenados. Las condiciones iniciales empleadas fueron x(O) = 4, y(O) = 4. La curva en negro representa la población x(t) del depredador (zorros) y la curva en color a la JJ(~) de la presa (conejos). Obsérvese que el modelo parece predecir que ambas poblaciones, x(t) y y(r), son periódicas. Esto tiene sentido intuitivamente, porque cuando disminuye la cantidad de presas, la cantidad de depredadores terminará reduciéndose por el menor suministro alimenticio; pero a causa de un decremento en la cantidad de depredado- res, aumenta la cantidad de presas; esto, a su vez, origina un mayor número de depredadores, que más adelante originan otra disminución en la cantidad de presas. n depredador FIGURA 3.16 Modelos de competencia Ahora consideremos que hay dos especies animales distintas que ocupan el mismo ecosistema, no como depredador y presa, sino como competidores en el uso de los mismos recursos, como alimentos o espacio vital. Cuando falta una especie, supongamos que la razón de crecimiento demográfico de cada especie es d x 4 d;=l= Y z=cy, respectivamente. 102 CAPíTULO 3 MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN En vista de que las dos especies compiten, otra hipótesis podría ser que cada una se ve menguada por la influencia (o existencia) de la otra población. Así, un modelo de las dos poblaciones es el sistema lineal en que a, b, c y d son constantes positivas. Por otra parte, podríamos suponer, como lo hicimos en la ecuación (5), que cada rapidez de crecimiento en las ecuaciones (9) debe disminuir a una tasa proporcional a la cantidad de interacciones entre las dos especies: d x- = ax - bxydt dY- = cy - dxy.d t (11) Vemos por inspección que este sistema no lineal se parece al modelo depredador-presa de Lotka-Volterra. Sería más real reemplazar las tasas en las ecuaciones (9) -que indican que la población de cada especie aislada crece en forma exponencial- con tasas que reflejen que cada población crece en forma logística (esto es, que la población permanece acotada): dx- = a,x - blx2 dt dyY z = a2y - bzy2. W) Si a esas nuevas tasas se les restan razones proporcionales a la cantidad de interacciones, llegamos a otro modelo no lineal ak-g = alx - bg* - clxy = x(al - blx - qy) &-dt - a2.y - bu* - c2xy = y(a2 - bu - qx), (13) en que todos los coeficientes son positivos. El sistema lineal (10) y los sistemas no lineales (ll) y (13) se llaman modelos de competencia. Redes Una red eléctrica con más de un ciclo también origina ecuaciones diferenciales simultáneas. Como vemos en la figura 3.17, la corriente i,(t) se divide en las direcciones indicadas en el punto BI, que se llama nodo de la red. Según la primera ley de Kirchhoff podemos escribir i,(t) = i*(t) + if(t) (14) Sección 3.3 Sistemas de ecuaciones l ineales y no l ineales 105 mezcla, 2 gal/min FIGURA 3.20 9 . Se tiene un modelo depredador-presa de Lotka-Volterra definido por dx, dt -O.lX + 0.02xy 4-& = 0.2y - o.o25xy, en que las poblaciones x(t) del depredador, y y(t), de la presa, se expresan en miles. Con un programa, calcule, aproximadamente, el momento I > 0 cuando se igualan por primera vez las poblaciones suponiendo x(O) = 6, y(O) = 6. Use las gráficas para hallar el periodo aproximado de cada población. 10. Se tiene el modelo de competencia defínido por d x -& = x(2 - 0.4x - 0.3y) dyd; = y(1 - O.ly - 0.3x), en que las poblaciones, x(t) y y(r) se expresan en miles y I en anos. Con un ODE solver, analice las poblaciones a través de un largo periodo en cada uno de los casos siguientes: a) x(O) = 1.5, y(O) = 3.5 b) x(O) = 1, y(O) = 1 c) x(O) = 2, y(O) = 7 d) x(O) = 4.5, y(O) = 0.5 l l . Se tiene el modelo de competencia definido por dx-& = X(1 - 0.1.X - 0.05y) &x = y(1.7 - O.ly - O.l5x), en que las poblaciones x(t) y y(t) se expresan en miles y t en años. Con un ODE solver, analice las poblaciones en un largo periodo en cada uno de los casos siguientes: a)x(O)= 1, y(O)= 1 b) x(O) = 4, y(O) = 10 c) x(O) = 9, y(O) = 4 d) x(O) = 5.5, y(O) = 3.5 12 . Demuestre que un sistema de ecuaciones diferenciales para describir las corrientes iz(t) e &(t) en la red eléctrica de la figura 3.21 es el siguiente: 13 . Formule un sistema de ecuaciones diferenciales de primer orden que describa las corrientes iz(t) e is en la red eléctrica de la figura 3.22. 14 . 15. Demuestre que el sistema lineal de las ecuaciones (18) describe las corrientes i](t) e iz(t) en la red de la figura 3.18. [Sugerencia: dq/dt = i3.1 Una enfermedad contagiosa se difunde en una comunidad pequeña, con población fija de n personas, por contacto directo entre los individuos infectados y los susceptibles al pade- cimiento. Suponga que al principio todos son susceptibles y que nadie sale de la comunidad mientras se difunde la epidemia. Cuando el tiempo es t, sean s(t), i(t) y r(t), la cantidad de personas -en miles- susceptibles pero no infectadas, las infectadas por la enfermedad y las que se recuperaron de la enfermedad, respectivamente. Explique por qué el sistema de ecuaciones diferenciales FIGURA 3.21 106 CAPíTULO 3 MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN L$f + L$? + Rli2 = E ( t ) -Ri!?+R&+li =o ’ dt 2dt C3 ’ RI i3 AL 4 ‘Q2 FIGURA 3.22 / ds - = -klsi d t !!L-ki+k~~ dt 2 ’ Sección 3.3 Sistemas de ecuaciones lineales y no lineales 1 0 7 en que kl (tasa de infección) y k2 (tusa de eliminación o recuperación) son constantes positivas, es un modelo matemático razonable para describir la difusión de la epidemia en la comunidad. Proponga unas condiciones iniciales plausibles asociadas con este sistema de ecuaciones. 16. a) Explique por qué en el problema 15 basta con analizar &= -ksi dt ’ @=-ki+ksi dt 2 ” b) Sean kl = 0.2, k2 = 0.7 y n = 10. Escoja diversos valores de i(O) = io, 0 < io < 10. Con un ODE solver prediga el modelo acerca de la epidemia en los casos so > k2/kl y SO 5 k2Ikl. En el caso de una epidemia, determine la cantidad de personas que se contagiaran en último término. Problemas para discusión 17. Suponga que los compartimientos A y B de la figura 3.23 están llenos de fluidos y que están separados por una membrana permeable. Dicha figura muestra el exterior e interior de una célula. También suponga que el nutriente necesario para el crecimiento de la célula pasa a través de la membrana. Un modelo de las concentraciones x(t) y y(t) del nutriente en los compartimientos A y B, respectivamente, en el momento t, es el sistema lineal de ecuaciones diferenciales dx d;‘$Y -4 dy~=;(x-Y)? en donde VA y VB son los volúmenes de los compartimientos y k > 0 es un factor de permeabilidad. Sean x(O) = xs y y(O) = ys las concentraciones iniciales del nutriente. Con base sólo en las ecuaciones del sistema y en la hipótesis xo > yc > 0, trace curvas probables fluido a la fluido a la concentración concentración NO .HO membrana FIGURA 3.23 110 CAPíTULO 3 MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN FIGURA 3.26 8 . Se dispara un proyectil verticalmente hacia arriba, al aire, con una velocidad inicial VO Ns. Suponiendo que la resistencia del aire es proporcional al cuadrado de la velocidad instantánea, un par de ecuaciones diferenciales describen al movimiento: m$= -mg-kv2, k > 0, con la dirección de las y positivas hacia arriba, el origen al nivel del piso, para que v = VO cuando y = 0; la otra ecuación es Y m-=rng-kv2,dt k > 0, con el eje de las y positivas hacia abajo, el origen en la altura máxima, para que v = 0 cuando y = h. Estas ecuaciones describen al movimiento del proyectil cuando sube y baja, respectivamente. Demuestre que la velocidad de impacto \>i del proyectil es menor que la velocidad inicial vg. También se puede demostrar que el tiempo tl necesario para que el proyectil llegue a su altura máxima h es menor que el tiempo t2 que tarda en caer desde esa altura (Fig. 3.27). FIGURA 3.27 9. Las poblaciones de dos especies animales se apegan al sistema no lineal de ecuaciones diferenciales de primer orden dxz = klx(a - x) &z = kgy. Determine x y y en función de t. Sección 3.3 Sistemas de ecuaciones lineales y no lineales 111 2 lb/gal 1 galhnin mezcla, 5 gal/min A B loo gal 100 gal Ll- 7- iY - mezcla, mezcla, mezcla, 3 gal/min 1 gal/min 4 gal/min FIGURA 3.28 10. Dos tanques, A y B, contienen 1 OO galones de salmuera cada uno al principio del proceso. El líquido, bien agitado, pasa entre ambos como muestra la figura 3.28. Con la información de la figura, formule un modelo matemático para el número de libras de sal XI y ~2, en los tanques A y B, respectivamente, en cualquier momento.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved